Bioremediation and bioavailability (BIOREM)


The research is focused on the understanding of the interconnections between bioavailability and biodegradation of organic pollutants, with the final aim of promoting their removal.

The bioavailability of organic pollutants in soils represents their accessibility for biological assimilation and toxicity. Bioavailability has a profound impact on the fate and effects of pollutants. For example, the biodegradability of pollutants in soils cannot be assessed properly without considering their bioavailability for microbial populations able to carry out the transformation. Biodegradation rates may reflect the dependency of slow phase exchanges (desorption, partitioning), and as a result, a-priori biodegradable pollutants can persist for a long time.

Our research has a clear motivation for integrating the results in innovations that allow a better competitiveness of bioremediation technologies, and an improvement of our environment. Ultimately, for creating a momentum, at an international level, for real implementation of bioavailability science into retrospective and prospective regulations of organic chemicals.

The specific objectives of the research cover different chemical and biological mechanisms that affect the bioavailability of organic pollutants:

  • For example, we study the effect of partitioning from non-aqueous phase liquids (NAPLs) on biodegradation, covering aspects such as the application of biosurfactants and oleophilic fertilizers to speed the process.
  • Biodegradation of sorbed pollutants in model systems and in soils.
  • Mobilizing factors for microorganisms and/or pollutants in soil that act upon slow desorption pollutants, including surfactants and nanomaterials.
  • Mobilizing power of microbial chemotaxis in soil, for enhancing pollutant bioavailability.

Further group details can be found in this link.

Dr. José Julio Ortega, Senior researcher (ORCID 0000-0003-1672-5199), is the head of the group, composed by two contracted doctors (Drs. R. Posada and M. Balseiro), and two PhD FPI fellows (Jose Carlos Castilla and Alicia Fernandez). The group collaborates permanently with Drs. Manuel Cantos and José Luís Garcia (Plant Propagation and Physiology, IRNAS), Dr. Magdalena Grifol (Univ. Barcelona) in the national projects, and, recently, with Dr. Carmen Fernandez, professor and researcher of the University Center of Defense at the General Air Academy of San Javier (Murcia). Likewise, the group has a solid international profile, collaborating frequently with researchers from other countries, such as Germany (L. Wick), Holland (J. Parsons) and Canada (S. Ghoshal).

“Hacia una modulación basada en riesgo de los flujos de carbono implicados en la eliminación biológica de contaminantes orgánicos en suelos: biodisponibilidad” Ministerio de Ciencia e Innovación (PID2019-109700RB-C21). 2020 – 2023.

“Soil bioremediation through flagellated bacteria: unravelling the mechanisms for enhancing bacterial tactic response” European Union (Marie curie H2020-MSCA-IF-2019, 895340 – BIOTAC). 2021 – 2022.

“Risk reduction of chemical residues in soils and crops – impact due to wastewater used for irrigation”. Partnership for Research and Innovation in the Mediterranean Area (PRIMA S2 2019 RESIDUE). 2020-2023.

“De la ciencia de la biodisponibilidad a la recuperación de suelos: Estimulación sostenible de redes biológicas para la mejora del reciclado del carbono de los contaminantes”. Ministerio de Economía y Competitividad (CGL2016-77497-R). 2017 – 2019.

“Bioremediation and revegetation to restore the public use of contaminated land”. Unión Europea (LIFE15, ENV/IT/000396). 2016 – 2019.

“Microbial networks for PAC cycling in polluted soils.” European Union (Marie curie H2020-MSCA-IF-2014, 661361-NETPAC). 2015 – 2018.

“Sinergias funcionales entre microorganismos y plantas en la recuperación sostenible de suelos contaminados por HAPs”. Ministerio de Economía y Competitividad (CGL2013-44554-R). 2014 – 2017.

“Evaluación de estrategias químicas sostenibles para la mejora de la bioaccesibilidad en la biorremediación de suelos contaminados por PAHs”. Junta de Andalucía, Proyectos de Investigación de Excelencia (RNM2337). 2014 – 2018.

«Explotación de las funciones microbianas de la rizosfera promotoras de la bioaccesibilidad y biodegradación de HAPs para la recuperación eficiente de suelos contaminados». Ministerio de Ciencia e Innovación, 2010-2013.

«Biorremediación de suelos: prospección de la diversidad microbiana y vegetal para la mejora de la bioaccesibilidad y mineralización de hidrocarburos aromáticos policíclicos». Ministerio de Educación, 2007-2010.

«Biodisponibilidad y metabolismo microbianos de hidrocarburos aromáticos policíclicos presentes en vertidos marinos de petróleo. Implicaciones para su atenuación natural y biorremediación. Ministerio de Educación, 2005-2008.

«Evaluation of availability to biota for organic compounds ubiquitous in soils and sediments». European Union. 2001-2004.

«Use of bioavailability-promoting micro-organisms to decontaminate PAH-polluted soils:  preparation towards large-scale field exploitation». European Union. 2000-2004.

«Development of biotechnology for soil detoxication from polycyclic aromatic hydrocarbons (PAHs) on the basis of application of chemotactically active microorganisms of plant rhizosphere». European Union & International Science and Technology Centre (ISTC). 1999-2001.

«Evaluation of bacterial strategies to promote bioavailability of hydrophobic pollutants for efficient bioremediation of contaminated soils». European Union. 1997-2000.

Posada-Baquero, R., Semple, K. T., Ternero, M., Ortega-Calvo, J. J. (2022) Determining the bioavailability of benzo(a)pyrene through standardized desorption extraction in a certified reference contaminated soil. Science of the Total Environment 803:150025.

Fernandez-Lopez, C., Posada-Baquero, R., Garcia, J. L., Castilla-Alcantara, J. C., Cantos, M., Ortega-Calvo, J. J. (2021) Root-mediated bacterial accessibility and cometabolism of pyrene in soil. Science of the Total Environment 760:143408.

Ortega-Calvo, J.J., Stibany, F., Semple, K.T., Schaeffer, A., Parsons, J.R., Smith, K.E.C. (2020) Why biodegradable chemicals persist in the environment? A look at bioavailability.  Bioavailability of Organic Chemicals in Soil and Sediment, Handbook of Environmental Chemistry, Ortega-Calvo, J.J., & Parsons, J.R. (Eds.), Springer Nature Switzerland AG, 100: 243–266.

Posada-Baquero, R., Grifoll, M., Ortega-Calvo, J.J. (2019) Rhamnolipid-enhanced solubilization and biodegradation of PAHs in soils after conventional bioremediation. Science of the Total Environment 668: 790-796.

Jimenez-Sanchez, C., Wick, L. Y., Ortega-Calvo, J. J. (2018) Impact of Chemoeffectors on Bacterial Motility, Transport, and Contaminant Degradation in Sand-Filled Percolation Columns. Environmental Science and Technology 52: 10673-10679.

Sungthong, R., Tauler, M., Grifoll, M., Julio Ortega-Calvo, J. (2017) Mycelium-Enhanced Bacterial Degradation of Organic Pollutants under Bioavailability Restrictions. Environmental Science and Technology 51: 11935-11942.

Ortega-Calvo, J.J., Harmsen, J., Parsons, J. P., Semple, K., Aitken, M. D., Ajao, C, Eadsforth, C., Malyka Galay-Burgos, M., Naidu, R., Oliver, R., Peijnenburg, W. J. G. M., Römbke, J., Streck, G., Versonnen, B. (2015) From bioavailability science to regulation of organic chemicals. Environmental Science and Technology 49: 10255−10264.

C. Jimenez-Sanchez, L. Y. Wick, J. J., Ortega-Calvo (2012) Chemical effectors cause different motile behavior and deposition of bacteria in porous media. Environmental Science and Technology 46: 6790-6797

M. C. Tejeda-Agredano, S. Gallego, J. L. Niqui-Arroyo, J. Vila, M. Grifoll, J. J. Ortega-Calvo (2011)  Effect of interface fertilization on biodegradation of polycyclic aromatic hydrocarbons present in nonaqueous-phase liquids. Environmental Science and Technology 45 1074-1081.

Bueno-Montes, M., Springael, D., Ortega-Calvo, J. J. (2011) Effect of a non-ionic surfactant on biodegradation of slowly desorbing PAHs in contaminated soils. Environmental Science and Technology 45: 3019-3026.

Velasco-Casal, P., Wick, L.Y., Ortega-Calvo, J.J. (2008). Chemoeffectors decrease the deposition of chemotactic bacteria during transport in porous media. Environmental Science and Technology 42:1131-1137.

Gomez-Lahoz, C. and Ortega-Calvo, J.J. (2005) Effect of slow desorption on the kinetics of biodegradation of polycyclic aromatic hydrocarbons. Environmental Science and Technology 39:8776-8783.

García-Junco, M., Gómez-Lahoz, C., Niqui-Arroyo, J.L., and Ortega-Calvo, J.J. (2003). Biosurfactant- and biodegradation-enhanced partitioning of polycyclic aromatic hydrocarbons from Nonaqueous-phase liquids. Environmental Science and Technology 37:2988-2996.

Lahlou, M., Harms, H., Springael, D. and Ortega-Calvo, J.J. (2000) Influence of soil components on the transport of polycyclic hydrocarbon-degrading bacteria through saturated porous media. Environmental Science and Technology 34:3649-3656.

Ortega-Calvo, J.J., Fesch, C., and Harms, H. (1999) Biodegradation of Sorbed 2.4-dinitrotoluene in a clay-rich, aggregated porous medium. Environmental Science and Technology 33:3737-3742.

Ortega-Calvo, J.J., Birman, I. and Alexander, M. (1995) Effect of varying the rate of partitioning of phenanthrene in nonaqueous-phase liquids on biodegradation in soil slurries. Environmental Science and Technology 29:2222-2225.